Cell membrane disruption stimulates cAMP and Ca2+ signaling to potentiate cell membrane resealing in neighboring cells

نویسنده

  • Tatsuru Togo
چکیده

Disruption of cellular plasma membranes is a common event in many animal tissues, and the membranes are usually rapidly resealed. Moreover, repeated membrane disruptions within a single cell reseal faster than the initial wound in a protein kinase A (PKA)- and protein kinase C (PKC)-dependent manner. In addition to wounded cells, recent studies have demonstrated that wounding of Madin-Darby canine kidney (MDCK) cells potentiates membrane resealing in neighboring cells in the short-term by purinergic signaling, and in the long-term by nitric oxide/protein kinase G signaling. In the present study, real-time imaging showed that cell membrane disruption stimulated cAMP synthesis and Ca2+ mobilization from intracellular stores by purinergic signaling in neighboring MDCK cells. Furthermore, inhibition of PKA and PKC suppressed the ATP-mediated short-term potentiation of membrane resealing in neighboring cells. These results suggest that cell membrane disruption stimulates PKA and PKC via purinergic signaling to potentiate cell membrane resealing in neighboring MDCK cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell membrane disruption stimulates cAMP and Ca signaling to potentiate cell membrane resealing in neighboring cells

Disruption of cellular plasma membranes, a common event in many animal tissues, is usually rapidly resealed. Moreover, repeated membrane disruptions within a single cell reseal faster than the initial wound in a protein kinase A (PKA) and protein kinase C (PKC)-dependent manner. In addition to wounded cells, recent studies have demonstrated that wounding of Madin-Darby canine kidney (MDCK) cell...

متن کامل

Cell Membrane Disruption Stimulates NO/PKG Signaling and Potentiates Cell Membrane Repair in Neighboring Cells

Resealing of a disrupted plasma membrane at the micron-diameter range requires Ca(2+)-regulated exocytosis. Repeated membrane disruptions reseal more quickly than the initial wound, and this potentiation of membrane resealing persists for at least 24 hours after the initial wound. Long-term potentiation of membrane resealing requires CREB-dependent gene expression, which is activated by the PKC...

متن کامل

The mechanism of facilitated cell membrane resealing.

Disruption of the plasma membrane evokes an exocytotic response that is required for rapid membrane resealing. We show here in Swiss 3T3 fibroblasts that a second disruption at the same site reseals more rapidly than the initial wound. This facilitated response of resealing was inhibited by both low external Ca2+ concentration and specific protein kinase C (PKC) inhibitors, bisindolylmaleimide ...

متن کامل

O-31: Mifepristone Acts as Progesterone Antagonistof Non-Genomic Responses but InhibitsPhytohemagglutinin Induced Proliferationin Human T Cells

Background: Progesterone is an endogenous immunomodulator that suppresses T cell activation during pregnancy. The stimulation of membrane progesterone receptors (mPRs) would seem to be the cause of rapid non-genomic responses in human peripheral T cells, such as an elevation of intracellular calcium ([Ca2+] i) and decreased intracellular pH (pHi). Mifepristoneimmune cells compared with progeste...

متن کامل

Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis

Ca2+ influx through plasma membrane lesions triggers a rapid repair process that was previously shown to require the exocytosis of lysosomal organelles (Reddy, A., E. Caler, and N. Andrews. 2001. Cell. 106:157-169). However, how exocytosis leads to membrane resealing has remained obscure, particularly for stable lesions caused by pore-forming proteins. In this study, we show that Ca2+-dependent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017